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ABSTRACT

/(,7;39/

A matrix method using flexibility influence coefficients wé%dkg;nj}
developed for obtaining the free-free bending and torsional mode
shapes, slopes of mode shapes, and natural frequencies of space
vehicles. The effects of rotary inertia and shear flexibility are
included.

The mode shapes and natural frequencies were determined for a
typical space vehicle and compared with those obtained from a modified
Stodola method. Twenty mass points were used for the influence coef-
Ficient analysis and 201 for the Stodola method.

This report shows that the influence coefficient method will
obtain satisfactory mode shapes and frequencies in comparison to a

Stodola method.
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SUMMARY

Mode shapes and natural frequencies of a uniform and nonuniform
beam obtained by a flexibility influence coefficient method were compared
with a modified Stodola method. Twenty mass points were used with the
influence coefficient method, while 201 were used with the Stodola method
for the nonuniform beam analysis. For the uniform beam, 10, 15, and 20
mass points were used, while 145 were used in the Stodola analysis, The
results indicate that the flexibility influence coefficient method yields
reasonably accurate mode shapes and frequencies in bending and torsion
using only twenty mass points, Maximum variation in frequencies between
the two methods used was only about 2 percent for the nonuniform beam and
3 percent for the uniform beam. Mode shapes compared very closely with
the exception of the 4th modes of the free-free bending and torsion for
the nonuniform beam,

I, INTRODUCTION

During the past few years the vibration of various structures
and their components has become increasingly important to scientific
personnel in many fields. Practically any structure which is subjected
to shock or repeated loads experiences vibrations, These vibrations
result, in many cases, in structural fatigue, due to repeated stress
reversals, or violent structural failure due to a resonant condition.

In the space field, various problems arise in the design of con-
trol systems because of the elasticity of the structure. Insulation
of sensitive instruments against shock and vibration is a problem which
must be considered. Also, acoustical problems arise due to the high
energy level of the sound waves emitted by the rocket motors.




This report is concerned specifically with the vibration of non-
uniform beams, a problem which is analogous to the structural vibration
of a space vehicle airframe, A matrix method using flexibility influence
coefficients to determine the mode shapes, slopes of mode shapes, and
natural frequencies, both torsional and bending, for a uniform and non-
uniform single-beam structure is presented, This analysis includes the
effects of rotary inertia and shear flexibility.

The author expresses his appreciation to Mr. C. R. Wells of
Chrysler Corporation Space Division for the many helpful suggestions
in the preparation of this report.

II, DESCRIPTION

The total linear or angular deflection of any point on a beam can
be expressed as the sum of the deflections at that point produced by
the individual applied forces and torques. This is the principle of
superposition which will be used in writing the deflections and slopes
of a vibrating beam. The general equation for the displacements or
rotations of points on a beam can be written in the following form:

n
- ) €9 @=1,23. . .0 es
=

where q;'s are the generalized coordinates, deflection and rotationm,
Cij's are flexibility influence coefficients, and Qj's are generalized
forces or torques. The flexibility coefficients can be determined by
subdividing a beam into n parts, assuming the mass of each element to
be concentrated at the center of the element, applying a unit force and
moment separately at each point, and then determining the deflection and
slope at each point on the beam for each loading condition. Influence
coefficients of this type can be thought of as the reciprocal of the
spring constants for each mass point. The generalized forces Qj are

the inertia forces mijYiw® and the inertia torques IiYin.

There are seven types of flexibility influence coefficients
associated with bending vibration problems. Equations (2), (3), and
(4) illustrate their relationship to the total deflection, slope, and
bending slope of a beam,

From equations (1) and (2), the total deflection and slope can be
obtained for the ith mass point along a vibrating beam.
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Equations (2) and (3) have 3 unknowns, Yorss Y!., and Y!.; therefore,
an equation for Y}j must be written before a solution is possible.
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Two different mass moments of inertia are used in equatioms (2),
(3), and (4): Iy and Igy. 1I,; is the inertia due to the length of
the section and Ip; is the inertia due to the radius or diameter. 1In
equations (2), (3), and (4) one sees that I,; always occurs with Yii’
while I,. occurs with YBl The reason for this is that the length of an
element of beam rotates under both bending and shear loads; therefore,
Iy is always accompanied by Y§j + Yp; or Yrj. In the other case, the
diameter or radius of an element rotates only when subjected to a bending
load. A shearing load causes sliding of adjacent planes in the vertical
direction, but does not.produce any rotation of the diameter of the
element with respect to the vertical; therefore, Ip; is associated only
with Y'Bi'

Since the center of gravity of each element may not coincide with
its geometric center, it is necessary to add additional forces and
torques due to this unbalance as follows:
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(2) A moment: W m, Si YTi
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Equations (2'), (3') and (4') can be written in matrix form as follows:
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Since flexibility influence coefficients are more easily obtained
for a cantilever beam than beams with other end conditions, it will be
assumed that the above coefficients have been determined for this case.

Equation (5) will be written as

(s [ ]{}

and upon iteration the mode shapes, slopes of mode shapes, slopes of
the bending mode shape, and natural bending frequencies are obtained.
To obtain the free-free frequencies, modes shapes, etc., the clamped
end of the beam must be allowed to translate and rotate as shown below,

-

-
_—__CLAMPED _ POSITION

(6)




The cantilever deflections and slopes YTi and Y&. can now be

written in terms of the new variables YiF, YiF’ Xj, 0g, and Y.

YTi = Yi - Yo - Xieo @)
F
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F
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where Y;_, is the deflection of the free-free beam and Y} is the slope.
Y F .
Matrix equation (5) now reads
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Writing equation (10) in three separate equations,
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where L Coe :l is the first partitioned row of the influence coefficient
Ri

1 »
matrix ( Co _lR the second row and li Co L the third row. The mass and
L 2 3

moment of inertia matrix is PmIJ. The unknowns Yi’ Y;, and Y]'31’. are

designated { u } .

Introducing the boundary conditions that the shear and bending
moment are zero at the ends of the beam, we obtain

Zmi <Y1F +5; YiF> =0 (12)
i ' LY Lt =
Zmi <xi + si> < ip + 5 Y1F> + ZICG Yt Z Tps Vg, = O (13)

where
= - 2
ICG Iﬂi m, ST .

In matrix form, equations (12) and (13) read

’miJ{YiF} [misi‘l Y'iF}=o | (12')

L} _ s



Solving equations (lla), (1lb), and (llc) for Y. iF? Y;F’ and Yé [ F
substituting in (12') and (13') yields the following:

and

lremserm e fr o] [ J{2)
] pelrdrele [ L= {0

For simplification, the following substitutions are made:

and

(14)

(15)




Equations (14) and (15) may be written with the above substitutions
as follows:

Y Zmi+eoZmi(Xi+Si)+uFLAJ{u}=O. (14%)
Y, Zmi (X, +5.) + 6o [Zmi (X2 + 2%, Si)+ZJzi+ ZJRi]
+ P LBJ+ DJ+,EJ {u}=0. (1s5")

Making further substitutions:

M°=ani

)
|

= 2
Z}mi (Xi + 2Xi Si)

(2]
[

L =2 (

o + JRi).

Jﬂi
Equations (14') and (15') are written in the following form:
'MO’Y°+soeo+w2[AJ{u}=o. (1a")

1— 11}
SOY°+(J°+LO)9°+w2[FJ{uJ =0, (15")
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Equations (14") and (15") can be solved simultaneously for 6, and Yo

W2 So
oot )- L[]
So o Ky
= - 2 —_—_  — -
woeggee @) L) e
where
so
Ky = I, + L, - —
1 o o Mo
Rewriting equation (10)
(
l\ Xi
] i
-1l - - L
{u}= 0 $Y0+< 1 eo+w2|:d]{u} (18)
: - -
y \

Substituting for Y,
and (17) yields a set of
determine the total mode
ing mode shapes, and the

(1)

and 6,5 in equation (18) from equations (16)
equations in matrix form which can be used to
shapes, slopes of mode shapes, slopes of bend-
natural bending frequencies.

@[] ] {e)

1
'
]
[}
- )
u = - W 0
\} MOKl <_-_
0
)
Xi q
P
W 0
T T _E_ MO[
1 .

|-

J

A

el o
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The product of the row times the column matrices yields two

square matrices which can be added to [ d ] resulting in

{5 ]{s}. @

where [ D ] is the dynamic matrix for a free-free beam experiencing
bending vibrations.

The procedure to be used in the development of the influence -
coefficient matrices for digital computation can be found in Appendix A.

An iteration procedure for obtaining higher modes is given in
Appendix C.

Free-Free Torsion Equations

A set of equations for determining torsionai,frequencies and mode
shapes may be written similar to those for free-free bending. The
general equation for the angle of twist T;, of any section i is

m
T, = Z R’i"j 3T (1=1, 2, ... n) (21)
)

where

Wy is the natural torsional frequency

T

Rij is the torsional influence coefficients, and

J; is the polar mass moment of inertia.
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Assuming that the cantilever coefficients can be determined, n
equations may be written in matrix form as follows:

{ Tic } = 2 [ R'ig :l rJiJ { T, } ) . (22

Next, the clamped end of the beam is released similar to the
free-free bending case so that the angle of twist, free-free, may be
written as the angle of twist, cantilever, plus some angle of twist,
To, resulting from the releasing of the clamped end.

Top =T+ T, (23)

Solving for T;. above and substituting into equation (22) gives

(o}{}nea[ ] 0d{n) e

For free-free vibrations, the following equation holds:

E; Ji TiF = 0, (25)

Or, in matrix notation,

L Ji J-{ TiF }-= 0. (26)

Multiplying equation (24) by [ Js } yields

NN O P SN S




Solving for T, and substituting into equation (24) gives

{ra -2 03 [ I 0d )

ik
[ Dol {me }

where

Equation (28) in simplified form is

o b | (=] (2] | [ [{ra}-

where

=]

1 .
[ 1 J is the identity matrix, and

[ ][5 )P

In final form

{o = [n [{m ]

Equation (30) may be iterated on for the mode shapes and natural

frequencies,

13

(28)

(29)

(30)
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III, CONCLUSIONS AND RECOMMENDATIONS

Table I illustrates that the influence coefficient method can be
used with a reasonably small number of mass points compared to the
Stodola method to obtain accurate frequencies and mode shapes. Slopes
of mode shapes can also be obtained with this program, but were not
included in this report since the mode shapes give an indication of the
accuracy one could expect for the slopes. The accuracy of the mode
shapes and frequencies is increased with an increase in the number of
mass points. The first three mode shapes do not change appreciably,
but the fourth mode is sensitive to mass point changes from 10 to 15,

Table II compares the.cantilever, free~free bending, and free-
free torsional frequencies for the first four modes of a typical
space vehicle whose mass and stiffness characteristics are shown in
Figures 13 and 14, The EI used in the influence coefficient method
for each station was determined by averaging three values taken at
1/4, 1/2, and 3/4 of the length of the mass segment., For EI distribu-
tions that vary radically over a particular mass segment, it is recom-
mended that the reciprocal of an average value of the 1/EI distribution
be used for the effective EI.

Figures 1 through 12 compare the first four normal modes for the
free-free bending, cantilever bending, and the free-free torsion case
as obtained by the two methods. Good agreement was obtained in the
first three modes of the free-free bending case. The deviation in the
fourth mode can possibly be explained by the fact that two extra
""sweeping' processes were initiated before this mode was obtained.
This arose from the fact that the EI of a section of the nose was
small in comparison to the section beginning at station X = -25
(Figure 13), These intermediate modes or "tower modes," as they might
be called for a vehicle with an extremely flexible tower on the nose
of the vehicle, were not included in this report since the Stodola
method did not indicate their existence. Excellent agreement was
obtained for the cantilever mode shapes (Figures 5 through 8). Tor-
sional modes were in good agreement through the second mode. A slight
deviation occurred in the third mode and a considerable deviation in
the fourth, A different method for obtaining cantilever bending and
torsional influence coefficients could possibly increase the accuracy
of the program, The more difficult variable to evaluate properly for
each station appears to be the stiffness (EI); therefore, it is recom-
mended that various ways be tried to determine the proper EI.




TABLE OF RESULTS I

(Uniform Beam)

15

‘Modes

Free~Free Natural 1 2 3 4
Bending Frequencies (L/sec)
wiT - (145) MPTS. 48,64 120,52 209, 24 305.11
wﬁc - (10) MPTS. 48.40 118.15 200.42 283.72
uﬁC - (15) MPTS. 48,51 119.20 204,12 292,49
‘”;Izc - (20) MPTS. 48,56 119.58 205,52 295.97

Modes
"% Variation 1 2 3 4

ST, ==== I, C, (10) 0.49 1.97 4,22 7.01

ST. ===- I, C. (15) 0.27 1.10 2.45 4,14

ST, ~=== I. C. (20) 0.16 0.78 1.80 3.00

ST, ==== Stodola method
I,C. ---- Influence Coefficient method
MPIS. wmaa Mass points, »
Maximum
Normalized
Deflections ST. I. C. (10) I. C. (15) I. C. (20)
YlL and YIR 1.000 1.000} 1.000 0.990 1.000\ 0.999] 1.000 0.999
Y2L and Y2R 1.060 -1.000{ 1.000 §-0.997| 1.000 |-0.997| 1.000| -0.998
Y3L and Y3R 1.000f{ 1.000f 1.000 { 0.985| 1.000 | 0.986| 1.000{ +0.989
Y4L and Y4R 1.000| -1.000} 1.000 }-0.871} 1.000 }-0.951] 1.000| -0.954
Subscripts L and R denote left and'right extremes of beam.
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TABLE OF RESULTS II

(Non-Uniform Beam)

Stodola Method Modes

Natural Frequencies Rad/sec 1 2 3 4
(cantilever) 2,37 8.25 18.41 32.93
(free-free) 7.78 18.85 34.58 51.66
(torsion) 36.41 59.15 86.20 117.65

Influence Coefficient Method (20) Pts Modes

Natural Frequencies Rad/sec 1 2 3 4
(cantilever) 2.39 8.40 18.48 32.48
(free-free) 7.95 18.78 33.93 50.90
(torsion) 35.63 | 58.97 86.19 115.04

Percent Variation Modes

% Var. -a- :—:ﬁ ) 100 1 2 3 4
(cantilever) 0.84 1.82 0.38 -1.36
(free-free) 2.19 -0.42 -1.88 -1.47
(torsion). -2.14 -0.30 0.00 -2.22
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APPENDIX A
Cantilever Influence Coefficients for Bending
AConsider a beam divided into n equal segments of length 24 with

the mass concentrated at the geometric center. Influence coefficients
for a unit force may be written as follows:

Vs

V

p 1 2 j-1 j 1 n
42 (Y 25 .. 2g /l/D 24 (N 2 mzzl\/f\z
O (% A el A (N N N
A X1—>

7] Xo —p

y 2

A

X,
] >

Using the moment area method, the deflection at station (1) due to
‘a force at (1) is

g8 . £
L7 3E, I,

The centroid of the area under the M/EI diagram with respect to station
(1) is

B _ 2L
1 3.
It then follows that
B
B CF =FB
Cil = =1l (X{ + X5 - X1) for i >1

B

B3 (K-X) 4 _Xo | 2
22712 E1 I3 3 E Ip
B _ cEB

2 G- X)) L X |
2B, 1. 6%, 1.t
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B
D5

(223+xi-x2) for i > 2,
+ The following general expressions now can be written:

-x)2
2/3}1: —l—— for j > 2

i3
-and
)-(I:'B= —L for j > 2
J (X, - X,)
24 E, I
i1

MB
The influence coefficients C;; denote the deflection of station i due
_to a unit moment at j, which produces a bending deflect:.on and may be
written as follows:

B _ (L2 L2,
11 6E 1:1 3E, Io

‘The distance from the centroid of the —M diagram to stdation (1) is

2E, I, * 2Eo Io
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For i > 1 then

c‘m=%<f9+xi-xl>,

il

and for j >1

it
clg=—_xatl.m-1-(x§m+xi-xj) for i > j
3

N

¢B . ¢ for i < j.
ij ii

The influence coefficients GEB are symmetrical with respect to
Ctg (¢f.. ref, 1); therefore, the %ollowing expressions may be written:

and
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The rotation of station i due to a unit moment at j, which produces
bending, yields another set of influence coefficients °, Again using
the moment area method of reference 3, ij

MB _ __ ¢ yA 1 _ 1
LT E L, T2 | B, I I,

MB MB

eil = 611 for i >1
J

e}'ﬂ.3=23 1 S . for j > 1

3] Ei Ii E. I,
i=1 3

MB MB

. = 0. for i >
®15 = 853 ]
and
MB _ MB
eiJ. = eji for 1 < j.

Next, shear deflections due to a unit force will be considered.
These coefficients can be determined by multiplying two matrices con-
taining the shear area at each station, Agi, arranged in the following
manner:

L 9 0 0 0......
VAgy

1
1 L o o0......| =
JASI JASl “/Asz
1 1 1 1 0 O0..
JASl JAsl ~/A82 JASZ
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The influence coefficients SES may be obtained by setting up a
diagonal matrix of the 1/Asi values and multiplying by a triangular
matrix as follows:

ij 2c Agy

To determine the influence coefficients CM. a diagonal matrix of 1/A
is multiplied times the transpose of the agove triangular matrix.

T
[-dgi ] | éé.[i\\2§;\\\;] [Tlx—LWLLTi;] |
0

It is assumed that G is constant and therefore can be factored

out of each of the matrices used to obtain C%?, e?? and CE?.

see OO M
LI ] O =t i
=
-
" e e
« e ¢
. .
. .
: .
"
Pl
|
L2 L
WV
o .
—




APPENDIX B
Torsional Influence Coefficients

The torsional influence coefficients given in this appendix are

written for a cantilever beam. R{j denotes the rotation of station i
due to a unit torque applied at j.

O .
y £ 25 - 24 22 25 2 £
A .
1 &1 &: )@ &1 &m Nér
7
”——-Xl-b1
Xo—»
X
5 —p
% SN
11 Go Ip,
and
RPLe Ly
22 11 Ip,
Therefore,
X, - X
T T T -1 .
R.,, or R, = R N j>1
ii S I R P 3 S I S
T . .
Rij R for i < j
’ and

: R;. = R,. for i>j.
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APPENDIX C
Obtaining Higher Modes

After the first mode shape and bending frequency "have been
determined, the higher modes and frequencies can be obtained as
follows:

1. Iterate on the dynamic matrix from the front and obtain
a characteristic row. ’

(L [ ]| e e |

D, is the original dynamic matrix.

th

2, Normalize to the r unknown |

3. Form a square matrix with zeros for all elements in every

K
tow except the rth, 1Insert the == normalized row here, This will be

K,

called the E, matrix.

4., To obtain the new dynamic matrix D, for obtaining the second
‘mode, perform the following operations:

(o] [ ]] L5 ][]

where [ I ] is an identity matrix.

This same procedure is used to obtain the next mode, etc.
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APPENDIX D
Shear Deflections Due to a Pure Moment

The equation for displacements due to shear deformation is

CS =fL ﬂrsde
1 AG °

(o]

where s is the shear distribution due to a unit load and } is a cor~
rection factor used to obtain the proper shear area (Ag = 1 A). For

a unit shear load, § = 1, the above equation can be written as follows:

0
[

2

C
P
(v

r

Vo U . U « YWY .

O— 00— 0O
i )/

X —

Since ™. s and M' dx = s dx,
dx

218 . fL M' dx
ij o AG *

o at X = Xj. However, the above integral can be evaluated by

But M' =
as a unit finite impulse function as shown in the

first considering M
following figure.
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1
' - = -
M'(h, X Xj) ) whean<X<Xj+h

=0 whean+h<X<Xj

M' (X)
1/h

—6—0—P|;6—6—0—6—>X
| | J

L

Substituting the impulse function for M' in-C},iS, and letting h - 0, we
obtain : H

'
5 _ Lin LM(h,X-Xj)dx= .
ij h->o0 o AsG AG

=0 forX<on
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